P3.10-1) A particle's motion is defined by the equation $cr = \theta^2$ as shown in the graph, where r is in meters and c = 40 1/m. If the particle is traveling with constant angular velocity ($\dot{\theta} = 2 \text{ rad/s}$), determine the particle's velocity and acceleration as a function of θ .

y
0.2
-0.5 0 0.5 11 X
0.2
0.6
P3.10-1

Given:

_		
	 ()	

Solution:

Derive the pa	article's velocity	as a f	unction
of θ .			

Write down the velocity equation in terms of polar coordinates.

v = _____

Write down the equation for r as a function of θ ?

r = _____

What is the first derivative of *r* with respect to time?

 $\dot{r} =$

What is the particle's velocity as a function of θ ?

v =

Derive the particle's acceleration as a function of θ .

Write down the acceleration equation in terms of polar coordinates.

a = _____

What is the second derivative of r with respect to time?

 $\ddot{r} = \underline{\hspace{1cm}}$

What is the particle's acceleration as a function of θ ?

a = _____

Remember your units!